高壓水刀穿透岩石門檻條件探討

鄭富書 1  黃燦輝 2  吕揚中 3  賀陳弘 4

關鍵詞： 水刀、岩石、實驗。

摘 要

水刀在軟岩隧道開挖之應用具有潛力，惟水刀開挖岩石所需之門檻條件有待探討。本文探討高壓水刀對五種岩石（木山層砂岩、南港層砂岩、石碇層砂岩、大理岩、花崗岩）之穿透能力。實驗結果顯示：欲有效穿透岩石，水刀之壓力與流量須達一定條件，即門檻功率。當採用低流量水刀時，穿孔所需之門檻壓力遠大於岩石之真壓強度，各類岩石之門檻條件並不盡相同；依結果之回歸分析顯示，岩石之孔隙率愈高或真壓強度愈低，所需之門檻功率愈低。

THRESHOLD CONDITION FOR PENETRATING ROCKS USING HIGH PRESSURE WATERJET

Fu-Shu Jeng  Tsang-Hwei Huang  Yang-Chung Lu  Ho-Cheng Hong

Department of Civil Engineering
National Taiwan University
Taipei, Taiwan 10617, R.O.C.

Department of Power Mechanical Engineering
National Tsing-Hua University
Hsinchu, Taiwan 30043, R.O.C.

Key Words: waterjet, rock, experiment.

ABSTRACT

Waterjet potentially can be used for excavating tunnel through soft rocks. However, the ability of waterjet for cutting rocks and associated mechanism need to be explored and identified. The ability of waterjet has been assessed on five types of rocks, including three types of sandstone, granite and marble. The results indicate that, to effectively penetrate rocks, a threshold condition should be met. The output energy rate of waterjet is found to be an adequate measure for the required threshold condition as well as for assessing penetration depth. The results also indicate that the threshold energy is related to the porosity and compressive strength of rocks.

一、研究背景

水刀自1960年代開始商業化後，在持續研發下水刀能力大幅提昇；目前水刀輸出功率已由早期的10kW提昇至300kW或更高，約為當年翡翠水壩工程所採用之水刀輸出功率的10倍左右[1,2]。水刀在地下工程方面所能提供之潛力，亦相形增加，台灣隧道所經之岩盤多軟弱及破碎，故台灣之隧道工程在破碎帶之適用度有相當程度之擴展，開挖及大量

1 國立台灣大學土木工程學系副教授
2 國立台灣大學土木工程學系教授
3 國立台灣大學土木工程研究所碩士
4 國立清華大學動力機械學系教授
以水刀進行隧道之岩石開挖具有：(1)較機械式破碎機快速；(2)開挖面平整，可精確施工；(3)減少粉塵，低噪音；(4)機動性高可快速移動；(5)適應性好於岩盤時不需施作炸藥；(6)水壓不變，可使噴射時間長；(7)可適用於不同之動力系統；(8)受地形影響小，其適用範圍大於任何形式之破碎機，因此水刀適用於國內之隧道工程之岩石開挖之輔助方法，並具有潛在開發價值 [3]。

水刀輸出能力，主要因素有二：壓力及流量，水刀之流量、壓力及流量之關係為:

\[ E = P \times Q / 60 \]  \hspace{1cm} (1)

式中：\( E \) = 水刀輸出功率 (kW); \( P \) = 水刀壓力 (MPa); \( Q \) = 流量 (m³/min)。

水刀所射之流速通常與水刀之壓力有關，亦與噴嘴孔徑有關，其關係式如下:

\[ Q = c_1 \times d^2 \times \sqrt{P} \]  \hspace{1cm} (2)

式中：\( c_1 \) = 無次方之設計有關之係數，典型值 1.94～1.46；\( d \) = 噴嘴孔徑 (mm)。

水刀射出之速度通常與水刀之壓力有關，亦與噴嘴孔徑有關。其關係式如下:

\[ v_0 = c_2 \times \sqrt{P} \]  \hspace{1cm} (3)

式中：\( v_0 \) = 水射流出口速度 (m/s); \( c_2 \) = 與水刀之設計有關之係數，典型值 43.4～44.3。

水射流之反作用力，可以 \( P \) 及 \( Q \) 表達:

\[ R = c_3 \times \sqrt{P} \times Q \]  \hspace{1cm} (4)

式中：\( R \) = 反作用力 (N); \( c_3 \) = 與水刀之設計有關之係數，典型值 0.70～0.74。

水刀不能切割高硬度之材料，如金屬。此時，水刀之水流中可加入高硬度之磨料 (abrasive)，形成「加砂水刀」。利用磨料對欲切割之材料之磨削，達成切割之目的 [4,5]。


由此可知水刀之壓力功率之研究，所考量之岩石種類及岩石之特性不盡相同，其之水刀壓力、流量不盡相同，難以在同一基礎上比較。本文採用台灣島嶼型之岩石，包括最為常見之花崗岩、玄武岩、大理岩及石灰岩，同時考量岩石之壓力功率及壓力之影響，進行系統型之比較與研究。以釐清水刀之壓力功率對水刀穿透岩石能力之影響，同時比較各種岩石之性質（如單面壓力、拉力強度、孔隙率及乾密度）之影響。

二、實驗規劃

於岩石穿深實驗之水刀以高流量水刀為主，但由於其射流範圍過大（可穿透 1～2 m 之岩石），不適用於實驗室之研究用途。因此，於野外岩石穿孔時，岩石之岩石含水量及孔徑等，實驗結果往往不在相同的基礎上比較，不適用作為定量之研究。因此，本文採用高壓力、低流量之水刀，從而探討水刀對各種岩石穿透能力。本文採用加壓式高壓水刀，最大壓力可達 385MPa，最大流量 1.93m³/min，最大功率 20kW，可用噴嘴孔徑介於 0.07mm 至 0.22mm 之間 [11]。

為進行探討水刀對各種岩石之穿透能力，本文選定五種岩石：花崗岩、南澳山砂岩、南澳寒武岩、石英石及玄武岩。上述岩石之基本物理性質如表 1 所示，其岩石種類包括沉積岩、變質岩及火成岩。其性質範圍高低差異為 0.89%～13.10%。以及單壓強度由中強至高強度（42.44MPa～156.3MPa），其中砂岩為在台灣島嶼型之岩石中常見之岩石，此材料為岩石大且與結晶物質亦有所不同，其中花崗岩含鈣質物質較多，故強度在此三種岩石中最低。因此，本文選擇此三種岩石，以探討其對水刀穿透能力之影響。

<table>
<thead>
<tr>
<th>岩石種類</th>
<th>孔隙率 (%)</th>
<th>靜態強度 (MPa)</th>
<th>明氏硬度 (MPa)</th>
<th>乾度重量 (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>南澳山砂岩</td>
<td>7.34</td>
<td>77.6</td>
<td>9.15</td>
<td>35.58</td>
</tr>
<tr>
<td>南澳寒武岩</td>
<td>11.07</td>
<td>48.4</td>
<td>3.51</td>
<td>12.30</td>
</tr>
<tr>
<td>石英石</td>
<td>13.10</td>
<td>62.7</td>
<td>6.43</td>
<td>2.19</td>
</tr>
<tr>
<td>大理岩</td>
<td>0.26</td>
<td>72.9</td>
<td>6.38</td>
<td>87.00</td>
</tr>
<tr>
<td>花崗岩</td>
<td>8.09</td>
<td>156.3</td>
<td>11.23</td>
<td>39.00</td>
</tr>
</tbody>
</table>
五種岩石之採集地點：本山層砂岩採自中央電線寺，南港層及石灰層採自東京為快速公路萬里～瑞源之間，水泥 17K + 358 及 14K + 908 處，大理岩採於花蓮和平，花崗岩採自金山。

岩石採集後切成 10cm × 15cm × 15cm (厚) 大小，供水刀實驗。同時製作圓柱形試體，供力學強度測試；此類試體削切後置於素標準中乾燥，力學試驗及物理試驗，依照 ASTM 及 ISRM 規範所規定之試驗方式進行。穿孔深度以探針及測量表 (精度 0.05mm) 規定，惟孔徑之測量大小不一，造成底部不整齊，實際上之探測精度約次達 0.5mm。岩石樣本安裝於水刀機械之上，四周以金屬條固定之，以確保在實驗過程中試體不會位移及振動。

水刀對岩石穿透能力，在固定壓力、流量下、射距及材料表面之距離；stand-off 愈遠或施作時間愈長，其穿深愈深。因此，本文實驗首先需決定合適的射距及施作時間，且各項實驗均需統一之作法，其結果方能在相同基礎進行比較。

岩石受水刀施打之後，當水刀之壓力夠大時，會在岩石之表面造成穿孔，穿孔深度隨施作時間之增加而遞增，且當施作時間愈長時，其穿深遞減。實代表施作時間愈長，則其效率愈低。據此，本文實驗選擇為實驗施作時間為 7.5 秒，以取得較高之穿深效率，同時水刀之射距愈大，其穿深愈深。為獲得有效之穿孔深度，本文採用射距為 0.5cm。水刀之穿孔深度與水刀之壓力及流量有關；如式 (2) 所示，水刀在相同壓力下其流量與噴嘴孔徑成反比。本文採用孔徑為 0.229mm、0.203mm 及 0.152mm 三種噴嘴，以探討流量對穿深之影響。

三、實驗結果 — 穿孔深度曲線

典型之「穿孔深度—壓力」曲線，如圖 1 所示：(1) 雙刀之壓力遞增時，射距所造成之穿孔深度亦隨之遞增；(2) 當水刀之壓力不足時 (小於 180MPa)，穿深極淺；(3) 當水刀壓力大於一特性值之後 (大於 180MPa)，其穿深隨壓力之增加，顯著提高，此一特性值可取為「門檻壓力」 (threshold pressure)，如圖 1 中之 P0 值所示。水刀所能提供壓力大於門檻壓力，代表水刀足以穿透岩石；否則，水刀之能力不能穿透岩石。各種岩石所需之門檻壓力，有所不同，此點將進一步探討。

當水刀壓力大於門檻壓力之後，其穿孔深度與壓力增量呈線性關係，如圖 1 所示，本文定義此線段之斜率為 k (mm/MPa)。k 值愈大，代表岩石愈容易受水刀穿透。此時，穿孔深度 (S) 可以下式表之：

\[ S = k (P - P_0) + C_0 = kP + (C_0 - kP_0) = kP + C \]  (5)

式中：S = 穿孔深度 (mm)；P = 水刀壓力 (MPa)；P0 = 門檻壓力 (MPa)；k = 線段斜率 (mm/MPa)；C0 = P0 則所對應之穿孔深度 (mm)；C = C0 - kP0 (mm)。

各種岩石之穿孔深度與水刀壓力之關係，如圖 2 所示：其穿孔深度特性，包括 P0、k 及 C 執列於表 2。其中以石灰層砂岩最容易被水刀穿孔 (k = 0.139mm/MPa)，木山層為之 (k = 0.515 ~ 0.989mm/MPa)；而南港層砂岩及大理岩則難被穿孔 (k = 0.015 ~ 0.024mm/MPa)。

當噴嘴孔徑愈大時，相同壓力下為之流量愈大，所輸出之壓力亦愈大，如式 (1) 之式 (2) 所示；因此，於相同壓力下，由較大孔徑噴嘴之射流所造成之穿孔深度亦較深。

![圖 1 各種岩石之水刀穿孔深度與施打時間之關係](image1)

![圖 2 不同噴嘴與水刀壓力下造成各種岩石之穿孔深度](image2)

<table>
<thead>
<tr>
<th>岩石種類</th>
<th>噴嘴孔徑 (mm)</th>
<th>門檻壓力 (MPa)</th>
<th>門檻功率 (kW)</th>
<th>k × 10^3 (mm/MPa)</th>
<th>C (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>南港層砂岩</td>
<td>0.229</td>
<td>131.0</td>
<td>1.92</td>
<td>24</td>
<td>-1.6</td>
</tr>
<tr>
<td>南港層砂岩</td>
<td>0.203</td>
<td>148.2</td>
<td>1.82</td>
<td>18</td>
<td>-0.7</td>
</tr>
<tr>
<td>南港層砂岩</td>
<td>0.152</td>
<td>172.4</td>
<td>1.28</td>
<td>15</td>
<td>-1.2</td>
</tr>
<tr>
<td>木山層砂岩</td>
<td>0.229</td>
<td>90.0</td>
<td>1.10</td>
<td>98</td>
<td>0.2</td>
</tr>
<tr>
<td>木山層砂岩</td>
<td>0.203</td>
<td>110.3</td>
<td>1.17</td>
<td>82</td>
<td>-1.8</td>
</tr>
<tr>
<td>木山層砂岩</td>
<td>0.152</td>
<td>137.9</td>
<td>0.92</td>
<td>51</td>
<td>-0.6</td>
</tr>
<tr>
<td>石灰層砂岩</td>
<td>0.229</td>
<td>83.0</td>
<td>0.97</td>
<td>139</td>
<td>-</td>
</tr>
<tr>
<td>石灰層砂岩</td>
<td>0.203</td>
<td>100.0</td>
<td>1.28</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>花崗岩</td>
<td>0.229</td>
<td>180.0</td>
<td>3.10</td>
<td>70</td>
<td>-</td>
</tr>
</tbody>
</table>
四、水刀穿透岩石之門檻條件

由各種岩石之孔徑深度對壓力關係由線，可以決定各種岩石之門檻壓力。運用式(1)及(2)可同時考慮門檻壓力、噴嘴孔徑及流量，將之轉換為「門檻功率」。各種岩石之門檻條件（壓力及功率），將列於表2。

一般而言，如果岩石之單壓強度較小，則通過岩石所需之門檻壓力亦隨著增加。如圖3所示，各種岩石所需之門檻壓力均大於該岩石之單壓強度。

當所採用噴嘴孔徑愈小時（即流量愈小），所需之門檻壓力愈大，當噴嘴孔徑由0.220 mm減少至0.152 mm時，南港層及一般層的門檻壓力分別由131 MPa及90 MPa增加至172 MPa及138 MPa，如表2及圖3所示，值得注意的是，如圖4所示，當採用高流量（高功率）水刀時，岩石所需之門檻壓力可以小於岩石之單壓強度。因此，門檻壓力依水刀流量而變化，簡以門檻壓力不能足夠描述岩石所需之門檻條件。因此，本文進一步考慮流量條件，由式(1)求門檻功率與岩石單壓強度之關係，如圖4所示。相較於圖3，圖4中資料其較佳之線性迴歸性，其相關係數(R²)由0.45增至0.88。因此，以「功率」作為衡量門檻條件，較以「壓力」作為衡量為佳，且較符合物理原理。故本文以下之門檻條件之討論均採用「門檻功率」為衡量。

門檻功率與岩石張力強度之關係，如圖5所示，門檻功率與岩石之張力強度大致呈正相關，惟其線性迴歸係數並不佳。相關係數(R²)只有0.63。

門檻功率與岩石乾單位重之關係，如圖6所示，如果不考慮大理岩，則門檻功率愈高（除了大理岩之外），呈良好之線性關係(R²= 0.92)。另一方面，孔隙率愈高的岩石，其乾單位重愈低，門檻功率與岩石孔隙率之關係，如圖7所示，孔隙率愈低者，則門檻功率愈高（大理岩除外）；此關係亦呈良好之線性關係(R²= 0.90)。大理岩之質地細緻，其硬度不若花崗岩，此可能為導致所需門檻功率遠較花崗岩為低之原因之一。

---

**圖3** 各種岩石之門檻壓力與岩石單壓強度之關係

**圖4** 各種岩石之門檻功率與岩石單壓強度之關係

**圖5** 各種岩石之門檻功率與岩石張力強度之關係

**圖6** 各種岩石之門檻功率與岩石乾單位重之關係
五、岩石性質對門閘功率的影響

比較岩石性質之四因素（單壓強度、拉力強度、乾位重、孔隙率）與門閘功率之關係，分別如圖 4 ~ 圖 7 所示。對三種砂岩及花崗岩而言，有四個現象：

1. 單壓強度愈高，拉力強度愈高，乾位重愈高，孔隙率愈低，其所需之門閘功率愈高。
2. 上述四因素中以孔隙率及乾位重之線性迴歸係數最高，單壓強度次之，拉力強度不顯著。
3. 如果上述結果具代表性，其可能之因素為：
   (1) 岩石孔隙率大者，水容易穿入岩石顆粒的縫隙之中，以水之動能（或動量）供為破壞性質之動力，於岩石逐顆粒被水剝剝，造成深孔，反之，如果孔隙率小，則需較大之門閘功率。
   (2) 前點推論，適用於三種砂岩及花崗岩，其例外為大理岩之孔隙率最低，其門閘功率卻低於花崗岩（圖 6 及圖 7），大理岩由方解石結合成岩，經再結晶作用成長極為細密，惟方解石強度不若石英（三種砂岩及花崗岩均富含石英礦物），故其巨觀之單壓強度較花崗岩弱（表 1 及圖 4），導致易受水侵蝕，故可能由於單壓強度較弱之關係，使得較細密之大理岩，反而較花崗岩易被水侵蝕。
   (3) 比較三種砂岩之性質（表 1）中南港砂岩含鈣質結晶物質，且質地最為堅密且單壓強度最強，故所需之門閘功率亦最高。

綜上所述三推論，目前之實驗結果初步顯示：岩石所需之門閘功率與岩石之孔隙率及岩石之結晶強度（或單壓強度）之因素交互影響，有相當關連。

六、結論

綜合本文實驗結果與現象觀察，得到下列四項初步結論：